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Introduction
Schizophrenia (SCZ) is a destructive mental disorder 
with a typical onset in early adulthood. This disorder is 
characterized by a spectrum of symptoms including posi-
tive symptoms (delusions and hallucinations), negative 
symptoms (reduced motivation and apathy), and cogni-
tive deficits (impaired attention and executive function) 
[1, 2]. With a global prevalence of approximately 1%, SCZ 
imposes substantial socioeconomic burden and signifi-
cantly impacts patients’ families [3]. Understanding the 
mechanisms of the pathogenesis of SCZ and identifying 
effective therapeutic approaches for SCZ patients has 
always been an important objective of researchers [4]. 
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Abstract
Schizophrenia is one of the most debilitating mental illnesses affecting any age group. The mechanism and 
etiology of schizophrenia are extremely complex and multiple signaling pathways recruit genes implicated in the 
etiology of this disease. While the role of Wnt/β-catenin signaling in this disorder has been verified, the impact of 
long noncoding RNAs (lncRNAs) associated with this pathway has not been studied in schizophrenia. The objective 
of this study was to examine the expression levels of Wnt/β-catenin-related lncRNAs, namely CCAT2, SNHG5, PTCSC3, 
and DANCR, as well as the CTNNB1 gene encoding beta-catenin protein in two groups of schizophrenia patients 
(drug-naïve and medicated) compared with healthy individuals. This study included 50 medicated patients in the 
remission phase of the disease, 25 drug-naive patients in the acute phase, and 50 control subjects. There was no 
significant difference in CTNNB1 gene expression in the medicated patients compared to controls (P value = 0.9754). 
However, the expression of this gene was significantly decreased in drug-naïve first-episode patients compared 
with controls (P value < 0.001). In contrast, expression of DANCR, PTCSC3, SNHG5, and CCAT2 genes was significantly 
higher in medicated (P values < 0.001, < 0.001, = 0.01, < 0.001, respectively) and drug-naive first-episode patients 
(P value < 0.001) compared to control subjects. ROC curve analysis revealed that DANCR, PTCSC3, SNHG5, and 
CCAT2 genes had diagnostic power with specificity and sensitivity of 80% and above in separation between study 
subgroups. In brief, our data demonstrated dysregulation of Wnt/β pathway related genes and lncRNAs in the 
peripheral blood of patients with schizophrenia and their potential as biomarkers for this disorder.
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Despite extensive research, the precise etiology remains 
elusive. However, evidence suggests that dysregulation of 
gene expression and protein synthesis in brain tissue may 
play a critical role in this disorder [5, 6]. Currently, clini-
cal diagnosis relies heavily on symptomatology due to the 
absence of reliable biomarkers.

A comparative computer-based analysis has proposed 
shared and distinctive differentially expressed genes 
in the brains of SCZ exosome-recipient mice and SCZ 
patients, providing indications for changed prefrontal-
hippocampal functions in SCZ [7]. Dysregulated genes in 
SCZ models have been found to be enriched in pathways 
related with chemical synaptic transmission, cognition, 
and inflammatory responses [8].

Long non-coding RNAs (lncRNAs), a subgroup of 
RNA transcripts over 200 nucleotides in length without 
protein-coding capacity, have emerged as key regula-
tors of gene expression through interactions with signal-
ing pathways [9]. These transcripts act as sponges for 
miRNAs, another group of regulatory RNAs that have 
essential roles in SCZ pathophysiology and regarded as 
promising biomarkers for SCZ [10]. Recent studies have 
shown that lncRNAs can influence gene expression by 
interacting with various signaling pathways, and altera-
tions in their expression may contribute to disease mech-
anisms [11, 12]. These molecules are expressed not only 
in various brain tissues but also detectable in peripheral 
blood, implicating their potential role in neuropsychiatric 
disorders, including SCZ [13, 14]. SCZ has been shown 
to be associated with abnormal expression of Wnt gene 
and related proteins in the plasma. Gene expression 
assays have shown dysregulation of Wnt-related genes in 
favor of attenuation of canonical (β-catenin-dependent) 
signaling [15]. The Wnt/β-catenin signaling pathway, 
essential for cellular processes such as proliferation and 
polarity, has been implicated in numerous diseases. 
Recent research highlights that lncRNA-mediated dys-
regulation of this pathway could play a significant role in 
disease pathophysiology [16, 17]. While the role of Wnt/
β-catenin signaling in this disorder has been verified [18], 
the impact of lncRNAs associated with this pathway has 
not been studied in SCZ. In addition, the precise mecha-
nisms through which lncRNAs interact with the Wnt/β-
catenin pathway remain unclear. Since studies suggest 
that interactions between lncRNAs and Wnt/β-catenin 
pathway influence the course of different disorders [19], 
we aim to explicate the role of specific lncRNAs associ-
ated with the Wnt/β-catenin pathway in the context of 
SCZ. Specifically, we assessed the expression profiles 
of four lncRNAs (colon cancer-associated transcript 
2 [CCAT2], papillary thyroid carcinoma susceptibil-
ity candidate 3 [PTCSC3], differentiation antagonizing 
non-protein coding RNA [DANCR], and small nucleo-
lar RNA host gene 5 [SNHG5]) as well as expression of 

β-catenin in the peripheral blood of SCZ patients com-
pared to healthy subjects. These lncRNAs have been 
selected based on the existing literature on their role in 
the regulation of Wnt/β-catenin pathway. For instance, 
CCAT2 has been shown to activate the Wnt/β-catenin 
signaling pathway via induction of nuclear β-catenin 
[20]. Similarly, DANCR activates this signaling pathway 
and its silencing leads to reduction of β-catenin signaling 
and protein expression [21]. Moreover, SNHG5 has been 
found to be a robust activator of Wnt/β-catenin pathway 
[22]. On the other hand, PTCSC3 has a suppressive role 
on the activity of Wnt/β-catenin pathway through target-
ing the active β-catenin as well as other targets [23].

Although the role of these lncRNAs in the pathogen-
esis of SCZ has not been clarified, based on their role in 
the modulation of activity of Wnt/β-catenin pathway, 
we hypothesized that they are dysregulated in the blood 
samples of SCZ patients. By identifying these expression 
profiles, we hope to contribute to the understanding of 
the molecular mechanism underlying SCZ and poten-
tially pave the way for new biomarkers or therapeutic tar-
gets. This study is novel in its comprehensive approach 
to linking specific lncRNAs with the Wnt/β-catenin 
pathway in SCZ. Unlike previous research that has pri-
marily focused on brain tissue, our investigation utilizes 
peripheral blood samples, offering a less invasive method 
to study these molecular interactions. Additionally, this 
research could provide the first detailed insights into how 
these specific lncRNAs may influence the Wnt/β-catenin 
pathway in SCZ, potentially leading to innovative diag-
nostic and therapeutic strategies.

Materials and methods
Study participants
The current study was conducted on blood samples from 
50 medicated SCZ patients in the remission phase, 25 
first-episode SCZ patients who had not taken antipsy-
chotic drugs, and 25 healthy subjects. All patients were 
evaluated according to the 5th edition of the Diagnostic 
and Statistical Manual of Mental Disorders (DSM-V). 
Cases were recruited from Razi Hospital (Tabriz, Iran) 
in 2021. Patients who had no history of cigarette smok-
ing or substance abuse were included in the study. Con-
trol subjects were evaluated by a structured psychiatric 
interview to rule out the presence of psychiatric disor-
ders. The research protocol was approved by the Ethical 
Committee of Shahroud University of Medical Sciences 
(IR.SHMU.REC.1401.092). All methods and experiments 
were performed according to the relevant guidelines and 
regulations. All participants signed the informed written 
consent forms.
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Expression analysis
The total RNA of whole venous blood samples from 
study participants was extracted using the Hybrid-R 
blood RNA extraction kit (Gene All, Seoul, South Korea). 
The quantity of RNA was evaluated by NanoDrop equip-
ment (Thermo Scientific, USA), and the quality of RNA 
was verified by 1% agarose gel electrophoresis. In order 
to remove any genomic DNA contamination, samples 
were treated with DNase I (Thermo Scientific, Germany). 
Complementary DNA (cDNA) was synthesized using the 
FIREScript RT cDNA Synthesis Kit (Solis BioDyne, Esto-
nia). Four lncRNAs, namely CCAT2, SNHG5, PTCSC3, 
and DANCR were selected based on the existing litera-
ture on their role in the regulation of Wnt/β-catenin path-
way. Relative expressions of lncRNAs as well as CTNNB1 
were evaluated in controls and SCZ patients by utilizing 
RealQ Plus 2 × PCR Master Mix cyber-Green high ROX 
PCR Master Mix (Amplicon, Odense, Denmark) in Step 
One Plus Real-Time PCR equipment (Applied Biosys-
tems, Foster City, CA, USA). The YWHAZ was used as 
standardized internal references for normalization based 
on its stable expression in the peripheral blood of SCZ 
patients. The primer sequences are illustrated in Table 1.

Statistical analysis
Each reaction was independently repeated three times. 
The relative transcript levels of lncRNAs were assessed 
in all samples. YWHAZ expression level was consid-
ered normalizers in the Ln [Efficiency ^ΔΔCT] method. 
Expression levels of lncRNAs were compared between 
SCZ patients and normal controls using the ANOVA and 
Tukey tests after evaluation of the normality of the data 
by the Kolmogorov-Smirnov test. Correlations between 
lncRNAs were assessed by calculating the Spearman’s 
correlation rank (SPSS, Chicago, IL). All the obtained 
data were analyzed using the R v.4 software. Also, the 
diagnostic power of the expression levels of genes and 
lncRNAs was evaluated by the receiver operating charac-
teristic (ROC) curve.

Result
Characteristics of participants
A total of 50 medicated patients with SCZ, 25 first-epi-
sode patients without the use of any antipsychotic drug, 
and 50 healthy controls were recruited for the current 
study. The medicated patients used a standard dose of 
antipsychotic drugs such as risperidone, biperiden, olan-
zapine, tranqupine, and clozapine. The demographic data 
of the participants in the study is summarized in Table 2.

Expression assay
Expression levels of mentioned genes were compared 
between first-episode patients vs. controls and medicated 
patients vs. controls (Fig. 1).

There was a significant difference in the expres-
sion level of CTNNB1, DANCR, SNHG5, CCAT2, and 
PTCSC3 between the first-episode patient and healthy 
controls. The expression level of CTNNB1 was very low 
in the first-episode patient compared with the control 
(Expression difference= -7.210, P value < 0.0001).

On the other hand, the expression levels of CCAT2, 
SNHG5, PTCSC3, and DANCR were higher in the first-
episode patients compared with the controls (Expres-
sion difference = 46.237, P value < 0.0001; Expression 
difference = 3.896, P-value < 0.0001; Expression dif-
ference = 7.061, P-value < 0.0001; Expression dif-
ference = 5.140, P-value < 0.0001; respectively). The 
expression of mRNA/lncRNA genes was changed in 
medicated patients compared to healthy controls, but 
these expression changes were less than in first-epi-
sode patients. Table  3 shows the relative expression of 
lncRNAs in medicated patients and first-episode patients 
compared with healthy controls. While expression of 
CTNNB1 was lower in first episode patients compared 
with medicated patients (Expression difference=-6.868, 
P-value < 0.0001), expression of all mentioned lncRNAs 
was higher in first episode patients compared with medi-
cated patients (P-values = 0.0008, < 0.0001, = 0.00062 and 

Table 1  Primer sequences
Gene Sequence (5′–3′) Primer length (base pairs)
CCAT2 F: ​A​G​A​G​G​G​A​G​G​T​A​T​C​A​A​C​A​G​A​G​A​C 22

R: ​T​C​A​T​T​T​G​G​A​C​G​A​C​G​C​C​T​T​C​A 20
DANCR F: ​G​C​C​A​C​T​A​T​G​T​A​G​C​G​G​G​T​T​T 19

R: ​G​C​T​T​G​T​G​C​C​T​G​T​A​G​T​T​G​T​C​A 20
PTCSC3 F: ​G​G​C​T​T​G​A​A​C​A​A​T​C​T​T​C​C​C​A​C​C​T​T 23

R: ​T​T​T​G​G​C​A​A​C​A​C​C​C​T​C​A​C​A​G​A​C​A​C 23
SNHG5 F: ​T​C​T​G​G​G​C​G​G​G​T​G​G​T​A​G​G​A​A 19

R: ​G​C​T​A​C​T​C​G​T​C​C​A​C​A​C​T​C​A​G​A​A​C 22
CTNNB1 F: ​A​C​A​G​C​A​G​C​A​A​T​T​T​G​T​G​G​A​G​G 20

R: ​A​G​C​A​A​G​T​T​C​A​C​A​G​A​G​G​A​C​C​C 20
YWHAZ F: ​A​C​T​T​T​T​G​G​T​A​C​A​T​T​G​T​G​G​C​T​T​C 22

R: ​C​C​G​C​C​A​G​G​A​C​A​A​A​C​C​A​G​T​A 19
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= 0.0291, for SNHG5, CCAT2, PTCSC3 and DANCR, 
respectively).

Also, we evaluated the diagnostic power of transcript 
quantities of CCAT2, SNHG5, PTCSC3, and DANCR 
in identifying the first-episode patients and controls by 
depicting a ROC curve (Table 4). Based on AUC values, 
CCAT2 had the highest diagnostic power in SCZ patients 
(Fig. 2).

Evaluation of the pairwise correlation between 
lncRNAs revealed that CCAT2 expression levels were 
correlated with the expression of PTCSC3 and DANCR in 
both first-episode patients and controls. The correlations 
between SNHG5 and CTNNB1 expression levels were 
significant in first-episode patients (Correlation coeffi-
cient = 0.626, P-value = 0.001) (Figure S1).

Such correlations were also identified between other 
sets of lncRNAs, including PTCSC3 and DANCR, 
DANCR and CTNNB1 (Figure S2). Table 5 shows partial 
correlation results in the first-episode patients with SCZ 
and controls.

Finally, we evaluated correlation between expression 
of genes and age of disease onset in drug naïve patients 
(Table 6) and medicated patients (Table 7).

Notably, expression of SNHG5 was correlated with age 
of disease onset in the medicated patients.

Discussion
SCZ has a complex genetic and neurobiological back-
ground that affects brain development, particularly in its 
early phases [24]. Wnt/β-catenin pathway is critical in the 
central nervous system [25, 26]. Notably, dysregulation of 
this pathway is associated with the neuroinflammation in 
SCZ [18]. Meanwhile, dysregulation of lncRNAs plays a 
vital role in the progression of various diseases through 
modulation of Wnt/β-catenin signaling pathway. Addi-
tionally, interactions between lncRNAs and the Wnt/β-
catenin signaling pathways may be regarded as a novel 
avenue for identification of biomarkers.

In this study, we selected four lncRNAs, namely 
CCAT2, SNHG5, PTCSC3, and DANCR based on the 

Table 2  Demographic data of patients and controls
Study groups Parameters Values
Drug-naïve patients Gender (number, %) Male 25 (100%)

Female 0
Age (Years, mean ± SD) Male 27.1 ± 7.33

Female 0
Family History (number, %) Yes 15 (60%)

No 10 (40%)
Education (%) Illiterate 40%

School 32%
High School 24%
University 4%

Drug –in use Patients Gender (number, %) Male 47 (94%)
Female 3 (6%)

Age (Years, mean ± SD) Male 42.26 ± 8.42
Female 37.33 ± 11.5

Age at onset (Years, mean ± SD) Male 28.36 ± 6
Female 29 ± 3.6

Duration (Years, mean ± SD) Male 14.45 ± 6.8
Female 8 ± 8.18

Family History (number, %) Yes 35 (70%)
No 15 (30%)

Education (%) Illiterate 20%
School 30%
High School 44%
University 6%

Controls Gender (number, %) Male 45 (90%)
Female 5 (10%)

Age (Years, mean ± SD) Male (39.5 ± 8.8)
Female (41 ± 9.51)

Education (%) Illiterate 0
School 10%
High School 48%
University 42%
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existing literature on their role in the regulation of Wnt/
β-catenin pathway. Additionally, we evaluated expres-
sion of the protein-coding gene, namely CTNNB1 in 
the peripheral blood of SCZ patients in both the acute 

phase (first-episode and drug-naive) and remission phase 
(medicated) compared to healthy controls. Our find-
ings highlighted significant differences in the expres-
sion of these lncRNAs, suggesting their potential roles 

Fig. 1  Validation of relative expressions of CTNNB1 mRNA-coding gene and lncRNAs by qRT-PCR analysis in the peripheral blood of medicated schizo-
phrenia patients (n = 50), healthy controls (n = 50), and first-episode drug-naïve schizophrenia patients (n = 25). The columns were constructed by using 
GraphPad Prism 8 software. *P < 0.05; ***P value < 0.001; ****P value < 0.0001 in the annotations
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Table 3  Difference in the expression levels of mRNA/lncRNAs in first-episode patients, patients with a history of antipsychotic drug 
use and healthy controls (*shows significance). For multiple gene comparisons, we used Bonferroni test and P values remained 
significant after correction
Gene Medicated patients vs. 

controls (50 vs. 50)
First-episode patients vs. 
controls (25 vs. 50)

First-episode pa-
tients vs. medi-
cated patients 
(25 vs. 50)

CTNNB1 Expression difference -1.053 -7.210 -6.868
P-value 0.9754 < 0.0001* < 0.0001*

SNHG5 Expression difference 1.785 3.896 2.181
P-value 0.0106* < 0.0001* 0.0008*

CCAT2 Expression difference 7.674 46.237 6.025
P-value < 0.0001* < 0.0001* < 0.0001*

PTCSC3 Expression difference 3.271 7.061 2.158
P-value 0.0008* < 0.0001* 0.0062*

DANCR Expression difference 2.885 5.140 1.778
P-value < 0.0001* < 0.0001* 0.0291*

Table 4  The results of ROC curve analysis between drug-naive patients and controls (a: Youden index, significance level P (area = 0.5), 
estimate criterion: optimal cut-off point for gene expression, *shows significance)
Gene Estimate criterion Specificity Sensitivity AUC Ja P-value
PTCSC3 < 3.83 0.56 0.92 0.77 0.48 < 0.0001*
CCAT2 < 2.06 0.96 0.88 0.97 0.84 < 0.0001*
DANCR < 0.27 0.70 0.92 0.85 0.62 < 0.0001*
SNHG5 < -1.92 0.84 0.64 0.78 0.48 < 0.0001*

Fig. 2  The diagnostic power of transcript quantities of CCAT2, PTCSC3, SNHG5, and DANCR in identifying patients and controls
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in the pathophysiology of SCZ. Notably, expression of all 
mentioned lncRNAs was higher in first episode patients 
compared with medicated patients, showing the possible 
effect of medications on amendment of the alterations of 
these lncRNAs.

CTNNB1 has a dual function inside cells. It plays a cru-
cial role in the Wnt/ β-catenin pathway and is essential 
for cellular junctions, where it attaches cadherins to the 
cytoskeleton, thus having fundamental role in the cell 
adhesion [27]. It has been implicated in neurological 
diseases such as autism, Alzheimer’s disease, and SCZ 
[28–30]. In this study, the expression of CTNNB1 was not 
significantly different between medicated SCZ patients 
and controls, possibly due to the effects antipsychotic 

treatment. However, in drug-naive patients, CTNNB1 
expression was significantly decreased compared to con-
trols. Our results align with previous studies, such as 
Beasley et al.‘s study that found no significant difference 
in β-catenin expression between SCZ patients and con-
trols [31], and Alimohamad et al., who reported increased 
β-catenin levels following antipsychotic treatment [32]. 
To be more specific, total levels of β-catenin protein were 
shown to significantly increased after administration of 
clozapine, haloperidol or risperidone in rat models [32]. 
In fact, as a common feature, antipsychotics were found 
to affect levels of β-catenin protein regardless of their 
drug class. These effects are possibly mediated by D2 
dopamine receptors [32]. It is also worth mentioning that 

Table 5  Correlation coefficient and P-value of genes in drug-naive patients and controls (* shows significance)
CTNNB1 PTCSC3 SNHG5 DANCR CCAT2

CTNNB1 Drug naive patients R 1 0.335 0.626 0.334 0.382
P-value 0 0.101 0.001 0.103 0.060

Controls R 1 0.242 -0.068 0.483 0.277
P-value 0 0.090 0.638 < 0.001* 0.052

PTCSC3 Drug naive patients R 0.335 1 0.269 0.249 0.523
P-value 0.101 0 0.194 0.231 0.007*

Controls R 0.242 1 0.265 0.460 0.433
P-value 0.090 0 0.063 0.001* 0.002*

SNHG5 Drug naive patients R 0.626 0.269 1 0.307 0.254
P-value 0.001* 0.194 0 0.136 0.221

Controls R -0.068 0.265 1 0.215 0.341
P-value 0.638 0.063 0 0.133 0.015

DANCR Drug naive patients R 0.334 0.249 0.307 1 0.560
P-value 0.103 0.231 0.136 0 0.004*

Controls R 0.483 0.460 0.215 1 0.674
P-value < 0.001* 0.001* 0.133 0 < 0.001*

CCAT2 Drug naive patients R 0.382 0.523 0.254 0.560 1
P-value 0.060 0.007* 0.221 0.004* 0

Controls R 0.277 0.433 0.341 0.674 1
P-value 0.052 0.002* 0.015* < 0.001* 0

Table 6  Correlation between age of disease onset and expression of genes in drug-naive patients
Parameters CTNNB1 PTCSC3 SNHG5 DANCR CCAT2
R 0.04789 0.1267 0.1448 -0.1344 0.2397
P value 0.8202 0.5462 0.4898 0.5219 0.2485
P value summary ns ns ns ns ns
Significant (alpha = 0.05) No No No No No
Number of XY Pairs 25 25 25 25 25
ns: not significant

Table 7  Correlation between age of disease onset and expression of genes in medicated patients
Parameters CTNNB1 PTCSC3 SNHG5 DANCR CCAT2
R 0.05385 -0.1659 0.2839 0.1472 0.08401
P value 0.7103 0.2496 0.0457 0.3075 0.5619
P value summary ns ns * ns ns
Significant (alpha = 0.05) No No Yes No No
Number of XY Pairs 50 50 50 50 50
ns: not significant
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disruption in β-catenin expression, whether down-reg-
ulated or up-regulated, can result in abnormal neuronal 
proliferation and differentiation [33]. Moreover, certain 
SCZ-like phenotypes have been shown to be associated 
with CTNNB1 mutations [34]. Further studies are needed 
to show whether these mutations change the expres-
sion of CTNNB1 at mRNA level or solely impair protein 
function.

PTCSC3 is located on chromosome 14q13.3. This 
tumor-suppressive lncRNA plays a crucial role in vari-
ous disorders, including cancer and non-cancerous 
conditions, by regulating apoptosis, cell proliferation, 
and migration, and also influencing the Wnt/β-catenin 
signaling pathway [23]. PTCSC3 expression was sig-
nificantly increased in both medicated and drug-naive 
patients compared to controls, with more pronounced 
changes in drug-naive patients. LRP6, as a receptor of 
the Wnt/β-catenin pathway, was found to be targeted by 
PTCSC3 [35]. While some members of LRP family have 
been found to be altered in the context of schizophrenia, 
LRP6 exhibited no change [36]. It is possible that changes 
in the expression of PTCSC3 acts as an alternative route 
in the pathoetiology of SCZ instead of LRP6 dysregula-
tion. PTCSC3 was also shown to absorb miR-574-5p 
[37], a miRNA that is regarded as a biomarker for SCZ 
[38]. Thus, PTCSC3/miR-574-5p is another putative 
axis in the pathogenesis of SCZ. ROC curve analysis for 
PTCSC3 yielded specificity and sensitivity of 0.56 and 
0.92, respectively. Overexpression of this lncRNA may 
deactivate LRP6, affecting the Wnt signaling pathway by 
destabilizing the APC/Axin/GSK/β-catenin destruction 
complex [39–41].

DANCR is located on chromosome 4q12, and is impli-
cated in various cancers [42]. Our results demonstrated 
significant overexpression of this lncRNA in both medi-
cated and drug-naïve SCZ patients compared to controls. 
ROC curve analysis for DANCR showed specificity and 
sensitivity of 0.70 and 0.92, respectively. Wang et al. dem-
onstrated DANCR role in regulating osteogenic differen-
tiation by interacting with CTNNB1 and miR-320a. The 
results showed that DANCR and miR-320a functioned 
independently from each other and both suppressed 
CTNNB1. The inhibitory impact was additive when miR-
320a and DANCR were overexpressed together [43]. It 
is worth mentioning that changes in the expression of 
miR-320 family members were regarded to have diag-
nostic value in SCZ patients [44]. Thus, DANCR/miR-
320a might be a functional axis in the pathoetiology of 
SCZ. Further research is needed to fully understand how 
DANCR modulates this pathway and its potential impli-
cations for brain disorders.

Researchers have found that the lncRNA SNHG5 is 
abnormally expressed in various cancers and influences 
cellular processes like growth, cell cycle, autophagy, and 

apoptosis by interacting with miRNAs, signaling path-
ways, and other proteins [45]. In our study, SNHG5 
expression was significantly increased in both medi-
cated and drug-naive SCZ patients compared to controls, 
with greater changes in drug-naive patients. In addition, 
expression of SNHG5 was correlated with age of dis-
ease onset in the medicated patients. This finding pos-
sibly shows the effects of medication on the expression 
of this lncRNA. SNHG5 has an established role in the 
regulation of inflammatory responses and oxidative dam-
age [46], two processes that are fundamentally involved 
in the pathoetiology of SCZ [47, 48]. ROC curve analy-
sis for SNHG5 showed specificity and sensitivity of 0.84 
and 0.64, respectively. Previous studies indicate that SCZ 
is associated with a reduction in GSK3β, a key kinase 
in the Wnt signaling pathway [31]. Both β-catenin and 
GSK3β are crucial in this pathway. Others have shown 
that lncRNA SNHG5 inhibits GSK3β expression; and 
increased SNHG5 expression leads to decreased GSK3β 
[45, 49, 50]. Glatt et al. (2011) found increased lncRNA 
SNHG5 expression in SCZ patients compared to controls 
[51].

CCAT2 was significantly overexpressed in both medi-
cated and drug-naive SCZ patients compared to controls. 
ROC curve analysis for CCAT2 showed specificity and 
sensitivity of 0.96 and 0.88, respectively. This lncRNA 
is known for its role in promoting tumor growth and 
metastasis, and its expression is significantly upregu-
lated in various cancers. This upregulation is associated 
with a decrease in GSK3β expression [52, 53]. Given 
the inhibitory role of CCAT2 on GSK3β, an increase in 
CCAT2 expression in SCZ patients is expected to result 
in decreased GSK3β levels.

Our results align with previous research showing the 
regulatory roles of lncRNAs in various diseases. The 
notable changes in lncRNA expression seen in SCZ 
patients highlight their potential as biomarkers and 
therapeutic targets. To explore a potential correlation 
between selected lncRNAs and CTNNB1, we suggest 
conduction of knockdown and overexpression experi-
ments in the appropriate cell lines. Moreover, the results 
should be confirmed in larger samples sizes of patients 
and controls.

Conclusion
In summary, we investigated the expression of lncRNAs 
related to the Wnt/β-catenin pathway in the peripheral 
blood of SCZ patients (medicated and non-medicated 
patients). Dysregulation of lncRNAs and their interac-
tions with this pathway suggest complex mechanisms 
contributing to the pathogenesis of SCZ. PTCSC3 might 
affect the stability of the β-catenin destruction complex, 
while DANCR and SNHG5 could modulate gene expres-
sion through interactions with miRNAs and signaling 
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pathways. The observed difference in the expression 
of genes between treated and untreated patients might 
be due to the effect of antipsychotic medication. Mov-
ing forward, it is essential to validate these findings 
in larger patient cohorts and explore in greater detail 
how lncRNAs affect the Wnt/β-catenin pathway in 
SCZ. Identifying specific lncRNA expression profiles in 
SCZ patients could pave the way for diagnostic meth-
ods using blood samples and development of targeted 
therapies that modulate lncRNA activity. However, it is 
worth mentioning that changes in the expression of these 
lncRNAs are not specific to SCZ and might be observed 
in a variety of malignant and non-malignant conditions. 
Thus, it is necessary to measure baseline levels of these 
lncRNAs to use them as possible markers in the follow-
up of patients. Moreover, assessment of other conditions 
that might affect their expression is a necessary step in 
this process.

Our study has some limitations. First, the results of 
expression assays in the clinical samples should be veri-
fied in functional studies to unravel the mechanistical 
points beyond the findings. Second, larger sample sizes 
of both medicated and drug-naïve patients are needed to 
confirm the applicability of mentioned lncRNAs in diag-
nostic approaches.
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